NEW! TKActions Basic Panel–FREE!

I’m pleased to announce the availability of a new extension panel for Photoshop. The TKActions Basic panel creates luminosity masks and is meant to provide a simple way for anyone to add these techniques to their workflow.

The Basic panel incorporates the latest 16-bit method for making luminosity masks.  It’s essentially the “Basic” tab of the TKActions V4 panel with a new layout and added features.  The panel’s embedded scripts create Lights, Darks, and Midtones luminosity masks and also generate Curves and Levels adjustment layers with luminosity masks as the layer masks.  This makes it super easy to start using luminosity masks to confine adjustments to specific tones and to see how adjustments through these masks blend perfectly into the rest of the image.

The “Channels” section of the panel creates luminosity masks on Photoshop’s Channels panel AND also creates an active selection of the designated mask at the same time.  Active luminosity selections are the basis for luminosity painting, one of the most powerful methods for using luminosity masks.  It’s an excellent technique for localizing brightness adjustments when burning and dodging.  Painting through luminosity selections also provides precision for mask painting when exposure blending.

There is an integrated active selection indicator at the top of the panel. It’s a black and white scrolling bar that turns on anytime Photoshop detects an active selection. Since some luminosity selections do not generate selection borders (marching ants), this animated indicator informs the user when a selection is indeed present. Even if the marching ants are hidden in order to better evaluate painting through a selection, the indicator stays on and continues to provide a reminder that the selection is still active.

The white box at the bottom of the Basic panel provides rollover Help for any button.  Simply roll the mouse over a button and this area displays a message as to what the button does.

Clicking on the rollover Help window opens the panel’s settings.  From the settings dialog, users can control the panel’s color saturation and choose from five different languages for the panel’s interface.

The Instructions PDF is a short document that provides a more complete overview of the panel and what it does.

The TKActions Basic panel is free and can be downloaded here. It works on Mac and Windows computers and there are versions for Photoshop CC and Photoshop CS6 in the download folder. Four videos by Sean Bagshaw are also included to insure users are able to get the most benefit from the new panel.

Infinity Monochromes

NOTE: A folder of smaller PSD documents for the images used in this blog can be downloaded here.

Like many photographers, I love good black and white images.  Not only do they create a connection with the earlier incarnation of the art form, but there is also a certain elegance to monochrome images when they’re done right.  The lack of color creates immediate abstraction since a color-free world is not what we normally see.  Texture, form, and line are elevated and so we engage with the composition at a different level.  Black and white images remind us that color can sometimes be a distraction.  There is deep beauty in the monochrome world, though it is often hard to see with our color-adapted eyes.

Unfortunately, my skill in making black and white images does not match my appreciation for viewing them.  I struggle to get the tones properly balanced in my prints.  There seems to be two competing problems.  One is too much gray.  The image may have a full range of tones, from black to white, but if the midtones predominate, then the image frequently looks gray . . . and quite dull.  The solution to “too much gray” is to increase contrast.  But this then leads to the second problem:  textureless shadows and highlights.  As contrast is increased, detail is lost in the shadows and highlights.  Texture is critical to black and white.  If the shadows are blocked or the highlights are merely light gray without definition, the image has a posterization quality with large areas of uninteresting dark and light tones.  So it’s a fine balance with black and white, and it can take some effort to avoid too much gray in the midtones while maintaining appropriate texture in the shadows and highlights.

I’ve dabbled in black and white processing from time to time, experimenting with the different methods offered by Photoshop and Lightroom.  Recently I’ve started using the “Pixels” output of from the TK Infinity Mask panel as another alternative.  This “Pixels” button creates a pixel layer of the black and white infinity mask on the Layers panel, which basically constitutes a conversion of the color image to black and white.  As I’ve started to understand it better, it’s provided some unique opportunities.  Originally, I saw the “Pixels” option as an interesting feature to include in the panel, though I wasn’t sure how useful it would be.  The panel, after all, was designed to make masks to aid other developing tasks; it wasn’t meant to actually create images.  However, the panel’s sliders turned out to have some direct correlations to black and white images, and they provide an interesting approach to solving the problems listed above.


Before getting started with this discussion, there are a couple important points to cover.  The first is the necessity of properly setting the RGB and Gray working spaces in Photoshop’s color settings dialog (Edit > Color Settings).  In order for the “Pixels” output layer to match the panel’s preview infinity mask, the RGB and Gray working spaces must be properly aligned.  The two most common pairings are as follows:

  • RGB: ProPhoto RGB needs to be paired with Gray: Gray Gamma 1.8.
  • RGB: Adobe RGB (1998) needs to be paired with Gray: Gray Gamma 2.2.

If the RGB and Gray working spaces are not matched, there will be a brightness shift between the mask previewed by the Infinity Mask panel and the “Pixels” output on the Layers panel.

The second point is a reminder that the “Pixels” output option is bit-depth neutral.  If the original image is 16-bit, then the mask generated by the Infinity Mask panel is also 16-bit.  But even more important is the fact that the pixel layer created via “Pixels” output is an identical 16-bit copy of the preview mask (provided that the RGB and Gray working spaces have been properly set).  The process of converting the mask to pixels does not involve an intervening 8-bit selection that compresses the grayscale data.  So even though the grayscale mask discards the color information in the image, the bit-depth of pixel-level brightness data is maintained.

Below is the first image I experimented with using “Pixels” output for conversion to black and white.  Rolling the mouse over the image shows the final result. (NOTE: It may take a couple of seconds for the rollover image to load, but once it does, flicking the mouse back and forth across the image edge instantantly changes the image. Also, rollover images might not appear in the email feed but do work on the blog website.)  I did not record the settings I used to create this, and it’s largely unimportant.  The Infinity Mask panel is meant to be a place to experiment so see what works.  Different color channels, different tones, and different slider settings can all be easily tried to achieve the best outcome.  The “Pixels” output was really just a foundation in this case.  It provided the initial color-to-black-and-white conversion.  From there, additional masks and layers were added to arrive at the final image.  But the conversion step was pivotal in guiding the image to its final form.  The key in this case was using the Infinity Mask panel to find a TONE that looked best as white in the image, and then using the other sliders to manipulate the brightness values of the other tones and, in the process, remove the distracting background elements.

The second experimental image is shown below.  Again, a rather uninteresting color image but one where the repeating lines and shapes might work well in black and white.  The rollover shows the final presentation.

This image helped me better understand some of the fundamental relationships between the Infinity Mask panel’s controls and the monochrome image.  Specifically the sliders.

The TONE slider determines which tone in the image will appear as white in the mask and therefore also white in the “Pixels” output.  A “Lights-1” setting (TONE = 255) is a good starting point, but TONE values from 180 and up can be useful as experiments.  The lower numbers help to open the highlights in the image which can then be further manipulated by the other sliders.

RANGE  =  Black Point.  The RANGE slider determines the tonal width of the mask with the chosen TONE value as the center, whitest value.  By decreasing the RANGE value (pulling the slider left), tones more distant from the chosen tone go to black.  Some pure black in a black and white image often provides a good tonal foundation.  The RANGE slider can help determine where the black begins.

FOCUS = Midtone Contrast.  The FOCUS slider was designed to decrease the sometimes excessive feathering that is a natural part of luminosity masks.  It does this by increasing tonal slope around the 50% gray value in the mask.  In practical terms, this means that increasing FOCUS (pulling the slider to the right) is very good at eliminating midtone grays while maintaining shadow and highlight texture.  This is probably one of the most desirable features when using the Infinity Mask panel to convert color images to black and white.  The FOCUS slider provides a way to simultaneously control the two competing problems (too much gray and textureless highlights/shadows) mentioned earlier.

STRENGTH = White Point.  The STRENGTH slider determines the whiteness of the chosen tone and similar tones.  A value of 100 means that just the chosen tone is pure white.  Values less than 100 gray-down the whites, and values greater than 100 white-out nearby tones.  Leaving this slider set close to 100 is usually best.

Once these relationships between the Infinity Mask sliders and the black and white image are understood, some additional techniques become possible.  One of the most useful is to combine different infinity masks using different TONE settings into the final image.  While it’s sometimes possible to find one infinity mask that does a good job converting all tones in the image to black and white, it’s not always practical.  Different tones in the image may require, or at least work better, with a different black point, white point, and midtone contrast settings.  The Infinity Mask panel makes it possible to quickly make new masks that might work better for specific tones at specific tonal locations in the image.  The “Pixels” output of these masks can then be blended into the final image, sometimes using the “Pixels” output as a mask or selection to do the blending.  It’s even possible to create negative masks of the image and blend these into the positive and have them look completely natural.

This multi-tone blending technique was used to better control tones in two parts of the above image.  Alternate infinity masks starting with different TONE settings were created from the original color image, and these were then blended in using the “Pixels” output as a selection stencil for painting white on a black layer mask to reveal these tones.  The image below shows the final image without these additional blended masks and the rollover shows how the image looks more balanced with them blended in.

Starting to better understand how infinity masks could be used convert color images to black and white, I decide to try the technique on some finished color images.  This turned out to be somewhat easier since the tonal relationships had already been properly established in the developed color image.  It was relatively easy to make an initial “Pixels” output of an infinity mask of the image and then blend in a couple of additional infinity masks with different TONE settings to get the effect I wanted.  The image below shows the “Pixels” output of the original conversion of a color image to black and white.  The rollover is the final image with two additional infinity masks blended in.  The additional “Pixels” output layers help create better contrast in the grays in the canyon and the cloud.

The last image is another finished image that was converted to monochrome using the Infinity Mask panel.  This image illustrates the power of the color channels in the Infinity Mask panel.  The plug-in that runs the Infinity Mask panel has its own recipe for creating luminosity masks.  As a result, the color channel masks created by the panel don’t completely match the Red, Green, and Blue channel masks of Photoshop.  In fact, for black and white conversion, I think the Infinity Mask panel’s color channel masks are superior.  The Lights-1 versions of these channels offer some uniquely different interpretations of the image with higher contrast than the Photoshop color channels.  If the color image has some strong color elements and/or strong color differences, the Infinity Mask color channels nicely separate these colors into different tones. The R (Red) Infinity Mask channel was used to make the initial conversion of the image below.  The rollover shows the final image after some additional adjustments.

In summary, the TK Infinity Mask panel’s “Pixels” output option is a unique method for converting color images to black and white.  The sliders have some direct parallels to monochrome image processing.

  • TONE − Selects the image tone to display as white.
  • RANGE − Sets the black point.
  • FOCUS − Adjusts midtone contrast.
  • STRENGTH − Sets the white point.

Multiple “Pixels” output layers can be created to enhance specific tones in the image, and these can then be easily blended together to create the final monochrome image.  The color channels of the Infinity Mask panel also offer a surprisingly useful starting point to effectively exploit color variation for monochrome conversion.

Classic Luminosity Masking

Since writing the first luminosity mask tutorial I’ve found countless uses for them and there are always new options to explore. For new users, though, it can sometimes be a bit daunting to know where to start.  Understanding the basics of using luminosity masks can be a good stepping stone to more complex applications. A recent image provided a straightforward example of why luminosity masks can be so valuable.  I’ll use it to review some basic concepts both in words and pictures.

Here are three important things to remember about luminosity masks:

  1. They select tones in the image, not individual elements. It helps when using them to start thinking “tonally” about what will be selected with a luminosity masks instead of trying to use them to make a precise selection of a specific part of the image. Luminosity masks work best in situations where tonal differences are well-defined instead of in situations where there are obvious pixel edges.
  2. The edges of luminosity masks are perfectly feathered for blending. These masks are created from the brightness values of individual pixels. Just as a photograph is a continuous-tone image, luminosity masks provide continuous-tone blending. Sometimes this feathering can be a bit too perfect, especially in the initial masks, bleeding an adjustment into even weakly selected tones. But it’s easy to narrow the tonal range selected using techniques in the original tutorial or using calculations for 16-bit luminosity masks. Some feathering is necessary and highly desirable for insuring perfect blending of any adjustment or other Photoshop maneuver into the rest of the image.
  3. They are incredibly precise when properly used. Tonal selection and perfect feathering make it possible to use luminosity masks to make extremely targeted adjustments. Painting through an active luminosity selection is perhaps the best way to take advantage of this since multiple brushstrokes can be applied to the same area, slowly building up the desired effect, while also insuring it blends flawlessly into the image.

The image below of a cloud from a clearing storm against a mountain background is the example I’ll use to illustrate these principles. This is the nearly finished version of the image. The main problem left to fix is that the cloud isn’t as well defined as it could be. It’s an accurate depiction of what was captured, but it lacks good textural quality because the tones, especially in the brightest areas on the left, are too close together to provide meaningful definition for the viewer. The cloud still needs some work to bring out the tonal texture that is present, but hidden in the brightest tones.


But how to isolate the cloud for additional development? It doesn’t have any good edges. The wind-blown wisps along its outer portions would be a challenge to select with any standard Photoshop tool. And the hard edges created by these tools would be equally difficult to feather into the image. However, thinking tonally, the cloud is distinctly separate from its background, so the tonal selection provided by a luminosity mask would be ideal.

While there are an infinite number of luminosity masks, it’s usually easy to spot the right one. It’s the mask that is whitest in the areas of the desired adjustment and very dark in areas where no adjustment is required.  In this case, it was the Lights-3 mask (shown below). With this mask, the cloud clearly stands out from the background.


The red-overlay “view” mode (below) shows even more clearly how perfect this mask is. Not only is it more selected in the whitest areas of the clouds (darker red), but it also feathers very nicely to the edges of the cloud (lighter red). And, to top it off, there is no red in areas immediately adjacent to the cloud. So an adjustment using this mask will affect the whitest cloud areas most and feather perfectly to the wispy edges. There will also NOT be any haloing around the cloud caused by a poorly feathered selection. The luminosity mask will confine the adjustment to only those pixels where it’s needed. NOTE: The snow-covered mountain tops and upper cloud are also showing a small degree of selection (pale red) but it is a simple matter to paint these areas black in the final mask to exclude them from the adjustment made to the cloud.


Once the mask is decided on, it can be added to an adjustment layer. For this image a Levels adjustment works well. It takes the targeted tones and easily adds contrast to create more texture in the cloud, especially the blob-like, white areas. The Properties panel for this adjustment is shown below.


The image below shows the results. Rolling the mouse over this image shows what it looked like before this adjustment. (The rollover might not be visible in the email feed, but is visible on the blog website.)  It’s easy to see how the cloud (and only the cloud) has had its texture significantly improved.  This result displays one of the ideal qualities of luminosity masks, namely that they can separate tonal differences present at the pixel level which is nearly invisible to the eye. This is exactly what I was looking to do here, and the luminosity mask made it very easy.

This is a good start. The cloud shows improved tonal separation and is more congruent with the textural qualities present in the rest of the scene. However, this adjustment also had the unintended effect of graying-down the cloud. The tonal separation has been significantly improved, but some of the brilliance has been lost.

This now is a good example of a situation where painting through a luminosity selection (Luminosity Painting) makes a huge difference. This technique lets me selectively restore the crisp whites to the cloud by painting white onto a “Dodge” layer exactly where I want to add brightness. The luminosity selection controls which pixels receive paint and how much they receive.

LUMINOSITY MASK PEARL: The “7½” and “2½” zone selections are my initial go-to masks for removing this type of midtone grayness from an image. Painting white through a Zone-7½ selection lightens the lighter grays, but, because the very lightest tones in the image are subtracted off, it prevents blowing out the whites. The Zone-2½ selection does the same for the midtone darker grays. Painting black through the Zone-2½ selection darkens these grays, but, because the darkest blacks have been subtracted off, maintains enough texture to keep the details from going black. A 30% opacity brush is a good starting point, and plan on using multiple strokes to slowly build up the desired effect.

Painting white through a Zone-7½ selection in this case nicely targets the cloud without leading to a loss of texture in the brightest whites. It also prevents spilling paint onto the darker tones in the mountains behind the clouds. Some care is taken to use a brush size that allows paint to mostly fall on the gray clouds that need to be brightened and to allow selectively painting some areas multiple times.

The “Dodge” layer for this luminosity painting is a blank pixel layer set to Overlay blend mode. This painted layer, placed against a gray background, is shown below. It demonstrates how the Zone-7½ selection very nicely confines the white paint to the cloud and how I was able to add more paint to some areas to increase the effect exactly where I wanted it.


The final image is shown below. The rollover is the image before luminosity painting.

In summary, this image, with its poorly separated cloud texture, is a classic situation for using luminosity masks. Three important luminosity principles were applied:

  1.  Think tonally−Choose luminosity masks in situations where there is adequate tonal separation which can be exploited to create a useful mask or selection.
  2. Find the right mask and feathering−Look for a mask that is clearly lighter in the areas that need adjustment compared to areas that should not be adjusted.
  3. Paint for precision−Use luminosity painting to precisely burn and dodge the image to create the proper tonal balance.

These concepts can be applied to other situations where luminosity masks are being considered as a tool for image development.

If you’d like to experiment with these techniques, a downsized-size jpg of this image without the adjustments described in this tutorial can be downloaded here.

Luminosity Masks for Black and White

Being mostly a Nature photographer producing color images, I occasionally get questions about the applicability of luminosity masks to other genres such as portraits, wildlife, autos, and black and white. I always respond that luminosity masks work equally well on any continuous-tone image regardless of the subject. Luminosity masks select specific tonal ranges in the image, and since all photographs are composed of tones, they all can use luminosity masks to adjust these tones. It’s just a matter of finding a way to select the desired tones and then making the necessary adjustment.

Along this line, I thought I’d provide examples of a few adjustments from a recently developed black and white image. The before image (straight RAW conversion with no adjustments) is shown below. A mouse rollover shows the final image. (NOTE: Depending on the speed of your Internet connection it may take a few seconds for the rollover image to appear.)

I did a basic conversion to black and white in Adobe Camera Raw and then brought the image into Photoshop where I did the rest of the processing with luminosity masks. There were three adjustments that made the biggest difference for this image. The first was a luminosity painting layer. I wanted to improve the cloud texture and enhance the contrast between the clouds and the background in the lower part of the image. To do this I made a new layer, filled it with 50% gray, and changed the blending mode to Overlay. This became the “Dodge” layer for selectively lightening the clouds. Brushing white paint onto this layer has the effect of lightening anything on the layers below. In order to target just the clouds, a Zone 8 luminosity selection was created (mask shown below). It selects the tones in the clouds (lighter areas) without selecting the non-cloud parts of the image (darker areas).

Zone 8 mask

As I painted through this selection, the clouds (lighter areas) received white paint and are lightened, but the adjacent non-cloud (dark) areas receive no paint and remain unaffected. The Zone 8 selection guides the paint onto the layer so that it is perfectly applied to lighten the clouds without spilling onto the non-cloud areas. The effect this has on the image is shown in the before and after (rollover) images below.

The “Dodge” layer is reproduced below. It shows that the Zone 8 selection was extremely precise in depositing paint exactly where it was needed. Even the delicate fringes of the clouds are properly painted without straying onto the mountains behind. Luminosity painting through a luminosity selection can provide this “automatic accuracy” when burning and dodging. In addition, the effect can be built up to the degree that looks right for the image by varying brush opacity and applying multiple brushstrokes. So it’s highly customizable and the results often look completely natural.

Zone 8 mask

A second technique that helped this image involves the use of a quarter-tone mask. These are narrow tonal range selections that have their midpoints near the quarter tones of the image. The highlight quarter tones selection peaks around a gray value of 200 and the shadow quarter tones selection around 56. These are off-center midtone selections, so they aren’t locked into the lightest or darkest tones in the image. They feather tonally into both lighter and darker tones and their use is often accompanied by a favorable contrast change.

In this case, the shadow quarter tone mask (which I refer to as “3/4”) was used on a Curves adjustment layer. The layer’s blending mode was changed to Multiply, which darkens the image. This 3/4 mask served as the layer mask and controlled which parts were darkened. It is shown below.

3/4 mask

The before and after (rollover) images for the change provided by this layer is shown below. It’s subtle, but the adjustment definitely strengthens the darker parts of the mountain without dragging down the highlights.

When I want to do selective tonal lightening or darkening of an image, these quarter-tone masks combined with either Screen (to lighten) or Multiply (to darken) blending mode are something I try because it often produces a pleasing result. I actually find using the Screen and Multiply blending modes effective in many situations where a luminosity mask is the layer mask on a Curves or Levels adjustment layer. Instead of bending a curve or positioning a slider in this set-up, the layer’s opacity is simply adjusted to achieve the desired effect.

The last adjustment that made a significant difference to this image is one where I’m not entirely sure what I did. It involves a Curves adjustment layer set to Multiply blending mode, so it was another darkening adjustment. The adjustment was selectively applied through what appears to be some type of hybrid painting technique of the mask. In this case, a hide-all (black) mask would have had white paint brushed on to reveal the darkening adjustment of the layer. The painted mask is shown below.

Hybrid painted mask

A luminosity selection was obviously painted through to reveal of the sky and the tops of the mountains since the outline of these are clearly visible. But there is also some painting around the lower edges that appears to been performed with no active selection. I don’t recall exactly what was done and have been unable to duplicate it.

Despite the uncertainty of exactly how it as accomplished, this adjustment did a nice job of strengthening the sky texture and providing better overall tonal balance between the clouds in the sky and the mountains. The before and after (rollover) images are shown below.

This last adjustment shows that there is a certain degree of spontaneity in using luminosity masks. Not every adjustment requires just one mask or one way of using that mask. The photographer responds to what the image needs and selects the tools they wish to use to accomplish the desired goal. It’s important to not get locked into thinking that there is one mask that will make everything perfect. Luminosity masks are simply tools that can be used in multiple ways. There is no prescribed path and experimentation is always an option. They offer a versatile tool set for working with tones in all types of images.

A small PSD file of this image showing the entire workflow can be downloaded at the bottom of this page.